Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 416(11): 2749-2759, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37962609

RESUMEN

The protective effect of selenium (Se) against Hg-induced neurotoxicity has been widely investigated; however, the mechanisms behind this interaction have not been fully elucidated yet. In the current work, the role of Se against MeHg+-induced cytotoxicity in the human neuroblastoma cell line (SH-SY5Y) is reported for the first time by tracking Hg uptake and accumulation at the single-cell level by inductively coupled plasma-mass spectrometry in single-cell mode (SC-ICP-MS). The influence of different Se species (SeMet, SeMeSeCys, citrate-SeNPs, and chitosan-SeNPs) on MeHg+ cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. SeMet and SeMeSeCys exhibited protective effects against MeHg+-induced cell death, particularly at high MeHg+ concentrations (LC50). In addition, chitosan-SeNPs showed greater protection compared to citrate-SeNPs when co-exposed with MeHg+. Interestingly, SC-ICP-MS unveiled the heterogeneous distribution of Hg uptake by SH-SY5Y cells. Co-exposure of SeMet and SeMeSeCys with MeHg+ led to a reduction of the amount of Hg accumulated per individual cell, which decreased the maximum level of Hg per cell by half (from 60 fg Hg cell-1 to 30 fg Hg cell-1) when SeMet was present, along with a decrease in the percentage of cells that accumulated the highest quantity of MeHg+. All these data corroborate the protective role of Se against Hg toxicity at the cellular level.


Asunto(s)
Quitosano , Mercurio , Compuestos de Metilmercurio , Neuroblastoma , Selenio , Humanos , Selenio/farmacología , Selenio/metabolismo , Compuestos de Metilmercurio/toxicidad , Compuestos de Metilmercurio/análisis , Quitosano/farmacología , Mercurio/análisis , Línea Celular , Citratos
2.
Environ Res ; 245: 118072, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157971

RESUMEN

Fish acute toxicity tests are commonly used in aquatic environmental risk assessments, being required in different international substances regulations. A general trend in the toxicity testing of nanomaterials (NMs) has been to use standardized aquatic toxicity tests. However, as these tests were primarily developed for soluble chemical, issues regarding particle dissolution, agglomeration or sedimentation during the time of exposure are not considered when reporting the toxicity of NMs. The aim of this study was to characterize the NM behaviour throughout the fish acute test and to provide criteria to assay the toxicity of nine NMs based on TiO2, ZnO, SiO2, BaSO4, bentonite, and carbon nanotubes, on rainbow trout following OECD Test Guideline (TG) nº203. Our results showed the importance of conducting a preliminary test (without fish) when working with NMs. They provide valuable information on, sample monitoring, agglomeration, sedimentation, dissolution, actual concentrations of NMs, needed to design the test. Among the NMs tested, only bentonite nanoparticles were stable during the 96-h pre-test and test in aquarium water. In contrast, the remaining NMs exhibited considerable loss and sedimentation within the first 24 h. The high sedimentation observed for almost all NMs highlights the need of consistently measuring the concentrations throughout the entire duration of the fish acute toxicity test to make reliable concentration-response relationships. Notable differences emerged in LC50 values when using actual concentrations as nominal concentrations overestimated concentrations by up to 85.6%. Among all NMs tested, only ZnO NMs were toxic to rainbow trout. A flow chart was specifically developed for OECD TG 203, aiding users in making informed decisions regarding the selection of test systems and necessary modifications to ensure accurate, reliable, and reusable toxicity data. Our findings might contribute to the harmonization of TG 203 improving result reproducibility and interpretability and supporting the development of read-across and QSAR models.


Asunto(s)
Nanoestructuras , Nanotubos de Carbono , Óxido de Zinc , Animales , Dióxido de Silicio , Nanotubos de Carbono/toxicidad , Reproducibilidad de los Resultados , Bentonita , Nanoestructuras/química , Peces
3.
Antioxidants (Basel) ; 12(9)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37760045

RESUMEN

The fortification of foods with bioactive polyphenols aims to improve their functional properties and to provide health benefits. Yet, to exert their benefits, phenolic compounds must be released from the food matrix and absorbed by the small intestine after digestion, so assessing their bioaccessibility is crucial to determine their potential role. This work aims to incorporate Citrus reticulata Blanco peel extracts into wheat bread as a promising opportunity to increase their bioactive potential, along with supporting the sustainable management of citrus-industry waste. A control and a wheat bread enriched at 2% and 4% (w/v) with a phenolic extract from mandarin peels were prepared and analyzed for antioxidant activity and phenolic composition using LC-MS and UV-Vis spectrophotometry. In addition, in vitro digestion was performed, and the digested extracts were analyzed with HPLC-MS/MS. The results showed a significant increase in total flavonoid content (TFC, 2.2 ± 0.1 mg·g-1), antioxidant activity (IC50 = 37 ± 4 mg·g-1), and contents of quercetin, caffeic acid, and hesperidin in the 4% (w/v) enriched bread. Yet, most polyphenols were completely degraded after the in vitro digestion process, barring hesperidin (159 ± 36 µg·g-1), highlighting the contribution of citrus enrichment in the development of an enriched bread with antioxidant potential.

4.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37176018

RESUMEN

With the goal of combating the multi-faceted Alzheimer's disease (AD), a series of Rivastigmine-Benzimidazole (RIV-BIM) hybrids was recently reported by us as multitarget-directed ligands, thanks to their capacity to tackle important hallmarks of AD. In particular, they exhibited antioxidant activity, acted as cholinesterase inhibitors, and inhibited amyloid-ß (Aß) aggregation. Herein, we moved forward in this project, studying their ability to chelate redox-active biometal ions, Cu(II) and Fe(III), with widely recognized roles in the generation of oxidative reactive species and in protein misfolding and aggregation in both AD and Parkinson's disease (PD). Although Cu(II) chelation showed higher efficiency for the positional isomers of series 5 than those of series 4 of the hybrids, the Aß-aggregation inhibition appears more dependent on their capacity for fibril intercalation than on copper chelation. Since monoamine oxidases (MAOs) are also important targets for the treatment of AD and PD, the capacity of these hybrids to inhibit MAO-A and MAO-B was evaluated, and they showed higher activity and selectivity for MAO-A. The rationalization of the experimental evaluations (metal chelation and MAO inhibition) was supported by computational molecular modeling studies. Finally, some compounds showed also neuroprotective effects in human neuroblastoma (SH-SY5Y cells) upon treatment with 1-methyl-4-phenylpyridinium (MPP+), a neurotoxic metabolite of a Parkinsonian-inducing agent.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Enfermedades Neurodegenerativas , Humanos , Rivastigmina/farmacología , Compuestos Férricos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Monoaminooxidasa/metabolismo , Quelantes/farmacología , Bencimidazoles
5.
Anal Chim Acta ; 1249: 340949, 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-36868776

RESUMEN

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, representing 80% of the total dementia cases. The "amyloid cascade hypothesis" stablishes that the aggregation of the beta-amyloid protein (Aß42) is the first event that subsequently triggers AD development. Selenium nanoparticles stabilized with chitosan (Ch-SeNPs) have demonstrated excellent anti-amyloidogenic properties in previous works, leading to an improvement of AD aetiology. Here, the in vitro effect of selenium species in AD model cell line has been study to obtain a better assessment of their effects in AD treatment. For this purpose, mouse neuroblastoma (Neuro-2a) and human neuroblastoma (SH-SY5Y) cell lines were used. Cytotoxicity of selenium species, such as selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys) and Ch-SeNPs, has been determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry methods. Intracellular localisation of Ch-SeNPs, and their pathway through SH-SY5Y cell line, have been evaluated by transmission electron microscopy (TEM). The uptake and accumulation of selenium species by both neuroblastoma cell lines have been quantified at single cell level by single cell- Inductively Coupled Plasma with Mass Spectrometry detection (SC-ICP-MS), with a previous optimisation of transport efficiency using gold nanoparticles (AuNPs) ((69 ± 3) %) and 2.5 mm calibration beads ((92 ± 8) %). Results showed that Ch-SeNPs would be more readily accumulated by both cell lines than organic species being accumulation ranges between 1.2 and 89.5 fg Se cell-1 for Neuro-2a and 3.1-129.8 fg Se cell-1 for SH-SY5Y exposed to 250 µM Ch-SeNPs. Data obtained were statistically treated using chemometric tools. These results provide an important insight into the interaction of Ch-SeNPs with neuronal cells, which could support their potential use in AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas del Metal , Neuroblastoma , Enfermedades Neurodegenerativas , Selenio , Animales , Ratones , Humanos , Oro , Microscopía Electrónica de Transmisión
6.
Molecules ; 28(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36838611

RESUMEN

Obtaining polyphenols from horticultural waste is an emerging trend that enables the valorization of resources and the recovery of value-added compounds. However, a pivotal point in the exploitation of these natural extracts is the assessment of their chemical stability. Hence, this study evaluates the effect of temperature storage (20 and -20 °C) and drying methods on the phenolic composition and antioxidant activity of clementine and lemon peel extracts, applying HPLC-DAD-MS, spectrophotometric methods, and chemometric tools. Vacuum-drying treatment at 60 °C proved to be rather suitable for retaining the highest antioxidant activity and the hesperidin, ferulic, and coumaric contents in clementine peel extracts. Lemon extracts showed an increase in phenolic acids after oven-drying at 40 °C, while hesperidin and rutin were sustained better at 60 °C. Hydroethanolic extracts stored for 90 days preserved antioxidant activity and showed an increase in the total phenolic and flavonoid contents in lemon peels, unlike in clementine peels. Additionally, more than 50% of the initial concentration was maintained up to 51 days, highlighting a half-life time of 71 days for hesperidin in lemon peels. Temperature was not significant in the preservation of the polyphenols evaluated, except for in rutin and gallic acid, thus, the extracts could be kept at 20 °C.


Asunto(s)
Citrus , Hesperidina , Antioxidantes/química , Extractos Vegetales/química , Fenoles , Polifenoles , Citrus/química , Rutina
7.
Appl Microbiol Biotechnol ; 107(4): 1329-1339, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36680586

RESUMEN

The fruit-origin strain Fructobacillus tropaeoli CRL 2034 can biotransform selenium into seleno-nanoparticles and selenocysteine. The proteomic analysis of F. tropaeoli CRL 2034 exposed to 5 and 100 ppm of Se showed a dose-dependent response since 19 and 77 proteins were deregulated, respectively. In the presence of 5 ppm of Se, the deregulated proteins mainly belonged to the categories of energy production and conversion or had unknown functions, while when cells were grown with 100 ppm of Se, most of the proteins were grouped into amino acid transport and metabolism, nucleotide transport and metabolism, or into unknown functions. However, under both Se conditions, glutathione reductases were overexpressed (1.8-3.1-fold), while mannitol 2-dehydrogenase was downregulated (0.54-0.19-fold), both enzymes related to oxidative stress functions. Mannitol 2-dehydrogenase was the only enzyme found that contained SeCys, and its activity was 1.27-fold increased after 5 ppm of Se exposure. Our results suggest that F. tropaeoli CRL 2034 counteracts Se stress by overexpressing proteins related to oxidative stress resistance and changing the membrane hydrophobicity, which may improve its survival under (food) storage and positively influence its adhesion to intestinal cells. Selenized cells of F. tropaeoli CRL 2034 could be used for producing Se-enriched fermented foods. KEY POINTS: • Selenized cells of F. tropaeoli showed enhanced resistance to oxidative stress. • SeCys was found in the Fructobacillus mannitol 2-dehydrogenase polypeptide chain. • F. tropaeoli mannitol 2-dehydrogenase activity was highest when exposed to selenium.


Asunto(s)
Selenio , Selenio/química , Frutas/metabolismo , Manitol Deshidrogenasas/metabolismo , Proteómica , Estrés Oxidativo
8.
Food Res Int ; 160: 111714, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36076409

RESUMEN

The pharmaceutical and nutraceutical industries benefit greatly from recycling and transforming non-utilized parts of medicinal plants from agro-industrial operations into value added products. Hence, the aim of this work was to study the potential nutraceutical and pharmaceutical applications of Bunium ferulaceum Sm. aerial parts, in order to maximize their value. The phenolic profile of their hydromethanolic extract was determined and its antioxidant activity was evaluated in vitro and in vivo alongside with its anti-inflammatory activity and safety profile. The extract exerted an in vitro antioxidant activity mainly through radical scavenging (DPPH IC50: 14.0 ± 0.3 µg/ml) and iron chelating ability (24 ± 2 µg/ml), while, in vivo, the extract did not cause any mortality or visible signs of acute toxicity at high dose (2000 mg/kg body weight). The supplementation of the extract at different doses improved mice liver redox state by increasing catalase and reduced glutathione levels and reducing lipid peroxidation, without causing any toxicity. Moreover, the extract efficiently inhibited xylene induced ear inflammation (62 %). These different bioactivities were linked to the phenolic compounds present in the extract, particularly, chlorogenic acid (78 ± 6 mg/g extract), rutin (44 ± 2 mg/g extract) and hesperidin (56 ± 9 mg/g extract). However, further studies should be carried out on the isolated major compounds found in the extract to correlate the activity with these compounds or their mixture. The wasted aerial parts of Bunium ferulaceum Sm. proved to be a valuable source of polyphenols and exhibited interesting health promoting effects with no toxicity. Thus, Bunium ferulaceum Sm. aerial parts can be included in nutraceutical formulations or used as functional food and the extracted compounds may be used as an alternative food preservative.


Asunto(s)
Antioxidantes , Apiaceae , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Ratones , Fenoles/farmacología , Componentes Aéreos de las Plantas , Extractos Vegetales/farmacología
9.
Anal Bioanal Chem ; 414(26): 7573-7584, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35982253

RESUMEN

Alzheimer's disease (AD), the most prevalent neurodegenerative disease, is characterized by extracellular accumulation of amyloid-beta protein (Aß), which is believed to be the very starting event of AD neurodegeneration. In this work, D-Phe, D-Ala, and D-Glu amino acids, which are the non-occurring enantiomeric form in the human body, and also D-Asp and DL-SeMet, have proved to be amyloidogenic regarding Aß42 aggregation in TEM studies. These amyloidogenic amino acid enantiomers also widened Aß42 fibrils up to 437% regarding Aß42 alone, suggesting that Aß42 aggregation is enantiomerically dependent. To inhibit enantiomeric-induced amyloid aggregation, selenium nanoparticles stabilized with chitosan (Ch-SeNPs) were successfully synthesized and employed. Thus, Ch-SeNPs reduced and even completely inhibited Aß42 aggregation produced in the presence of some amino acid enantiomers. In addition, through UV-Vis spectroscopy and fluorescence studies, it was deduced that Ch-SeNPs were able to interact differently with amino acids depending on their enantiomeric form. On the other hand, antioxidant properties of amino acid enantiomers were evaluated by DPPH and TBARS assays, with Tyr enantiomers being the only ones showing antioxidant effect. All spectroscopic data were statistically analysed through experimental design and response surface analysis, showing that the interaction between the Ch-SeNPs and the amino acids studied was enantioselective and allowing, in some cases, to establish the concentration ratios in which this interaction is maximum.


Asunto(s)
Enfermedad de Alzheimer , Quitosano , Nanopartículas , Enfermedades Neurodegenerativas , Selenio , Humanos , Selenio/farmacología , Selenio/química , Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/química , Quitosano/química , Estereoisomerismo , Aminoácidos , Sustancias Reactivas al Ácido Tiobarbitúrico , Péptidos beta-Amiloides/química , Nanopartículas/química , Fragmentos de Péptidos/metabolismo
10.
Biomedicines ; 10(7)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35884815

RESUMEN

Alzheimer's disease (AD) is the most serious and prevalent neurodegenerative disorder still without cure. Since its aetiology is diverse, recent research on anti-AD drugs has been focused on multi-target compounds. In this work, seven novel hybrids (RIV-BIM) conjugating the active moiety of the drug rivastigmine (RIV) with 2 isomeric hydroxyphenylbenzimidazole (BIM) units were developed and studied. While RIV assures the inhibition of cholinesterases, BIM provides further appropriate properties, such as inhibition of amyloid ß-peptide (Aß) aggregation, antioxidation and metal chelation. The evaluated biological properties of these hybrids included antioxidant activity; inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and Aß42 aggregation; as well as promotion of cell viability and neuroprotection. All the compounds are better inhibitors of AChE than rivastigmine (IC50 = 32.1 µM), but compounds of series 5 are better inhibitors of BChE (IC50 = 0.9-1.7 µM) than those of series 4. Series 5 also showed good capacity to inhibit self- (42.1-58.7%) and Cu(II)-induced (40.3-60.8%) Aß aggregation and also to narrow (22.4-42.6%) amyloid fibrils, the relevant compounds being 5b and 5d. Some of these compounds can also prevent the toxicity induced in SH-SY5Y cells by Aß42 and oxidative stress. Therefore, RIV-BIM hybrids seem to be potential drug candidates for AD with multi-target abilities.

11.
Anal Bioanal Chem ; 414(8): 2739-2755, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35112149

RESUMEN

In this study, an integrated characterisation through polyphenol and caffeine content and antioxidant activity was combined with chemometric analysis to assess the effects of simulated in vitro gastrointestinal digestion on the bioaccessibility of these bioactive compounds from nine different tea infusions. Tea infusions were characterised based on total flavonoids, total polyphenols and antioxidant activity, together with the determination of individual polyphenol content. Fourteen phenolic compounds, including phenolic acids, stilbenes and flavonoids, were selected based on their reported bioactivity and high accessibility, attributed to their low molecular weight. Both polyphenols and caffeine were initially monitored in raw tea infusions and through the different digestion stages (salivary, gastric and duodenal) by capillary high performance liquid chromatography coupled to diode array detection (cHPLC-DAD) and/or HPLC coupled to a triple quadrupole mass analyser (HPLC-MS/MS). Multivariate analysis of the studied bioactives, using principal component analysis and cluster analysis, revealed that the decaffeination process seems to increase the stability and concentration of the compounds evaluated during digestion. The greatest transformations occurred mainly in the gastric and duodenal stages, where low bioactivity indices (IVBA) were shown for resveratrol and caffeic acid (IVBA = 0%). In contrast, the polyphenols gallic acid, chlorogenic acid and quercetin gave rise to their availability in white, green and oolong infusion teas (IVBA > 90%). Furthermore, highly fermented black and pu-erh varieties could be designated as less bioaccessible environments in the duodenum with respect to the tested compounds.


Asunto(s)
Polifenoles , Espectrometría de Masas en Tándem , Antioxidantes/análisis , Quimiometría , Cromatografía Líquida de Alta Presión , Digestión , Polifenoles/análisis
12.
Talanta ; 237: 122922, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34736659

RESUMEN

Distribution of Se and Hg in sarcoplasmic, myofibrillar and alkali-soluble protein fractions extracted from muscle tissue of tuna, swordfish and salmon (wild vs. farmed) is investigated for the first time. SEC-UV-ICP-MS analyses revealed that Se and Hg are mostly bound to proteins of 2-12 kDa and up to 574 kDa, respectively. Moreover, Se and Hg appeared associated to proteins of same molecular weight, evidencing that Se-Hg interaction may occur at the level of the fish tissue evaluated. Important differences were found between farmed and wild salmon, suggesting the effect of the type of feed and growing conditions on Se and Hg content and their distribution through protein fractions. Finally, Se speciation studies performed by HPLC-ICP-MS and confirmed by HPLC-ESI-MS/MS showed SeMeSeCys as the only Se specie found in soluble, sarcoplasmic, myofibrillar and alkali-soluble proteins of all fishes analysed, except in soluble proteins extracted from tuna, where SeMet was also identified.


Asunto(s)
Mercurio , Selenio , Animales , Cromatografía Líquida de Alta Presión , Peces , Músculos , Espectrometría de Masas en Tándem , Atún
13.
Talanta ; 238(Pt 1): 123033, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34857351

RESUMEN

This study develops for the first time an analytical method for the characterization of silver and gold nanoparticles in sewage sludge. The evaluation of the effect of temperature, extracting agent and centrifugation speed and time on the extraction yield was carried out through a multifactorial analysis of variance which allows us to select 289 g, 5 min and 20 mM sodium pyrophosphate tetrabasic as optimal extraction conditions. Under these conditions, the analysis of the extract by single particle inductively coupled plasma-mass spectrometry provided recovery percentages of 70 ± 2% and 56 ± 1% for silver and gold nanoparticles, respectively. Moreover, the complementary results obtained upon analysis of these extracts by transmission electron microscopy and single particle inductively coupled plasma-mass spectrometry showed that the developed method did not modify the original size and shape of these nanoparticles during the extraction procedure. Size detection limits of 23 nm and 16 nm as well as number concentration limits of 3.12 × 109 particles kg-1 and 1.38 × 109 particles kg-1 were obtained for silver and gold nanoparticles, respectively. Moreover, a stability study of silver and gold nanoparticles in sewage sludge for 12 months showed differences between the two nanoparticle types. Although the sizes were not affected during the 12 months, silver nanoparticles underwent an oxidation process from 6 months onwards, which was reflected in an increase in the percentage of ionic silver from 14 ± 1% at 6 months to 24 ± 2% at 12 months. The developed methodology represents a simple, reliable and fast tool for detecting, quantifying and assessing the stability of nanoparticles in an important environmental sample such as sewage sludge.


Asunto(s)
Nanopartículas del Metal , Plata , Oro , Espectrometría de Masas , Tamaño de la Partícula , Aguas del Alcantarillado
14.
J Chromatogr A ; 1644: 462128, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33845427

RESUMEN

A simple and efficient low-cost matrix solid phase dispersion (MSPD) extraction assisted by TiO2 nanoparticles and diatomaceous earth has been developed for the extraction of phenolic compounds from grape and grape pomace wastes. Experimental conditions for MSPD extraction were optimized by a factorial design and a surface response methodology. The simultaneous identification and quantification of eight main natural polyphenols (caffeic, p-coumaric, dihydroxybenzoic and gallic acid, rutin, resveratrol, quercetin and catechin) was possible by combining MSPD and capillary liquid chromatography coupled to a diode array detection and a mass simple quadrupole analyzer (cLC-DAD-MS). Good linearity and acceptable LOD (0.05-62 µg·g-1) and LOQ (0.2-207 µg·g-1) were obtained. The quantities of extracted polyphenols were within 2.4 and 333 µg·g-1, with catechin and rutin the most abundant compounds in grape pomace and grape wastes, respectively. Furthermore, considering the prospective uses of the winery bioresidues, the extracts have been characterised in terms of bioactive properties (several antioxidant activities and bacterial inhibition against Staphylococcus aureus, Escherichia coli and Pseudomona aeruginosa) and parameters such as total polyphenol and total flavonoid content. The high antioxidant activity (IC50 5.0 ± 0.4 µg ·g-1 against DPPH radical) and antibacterial activity (2.2 ± 0.3 mg·mL-1) suggests that the methodology developed is efficient, rapid and promising for the extraction of phenolic compounds with potential application as bioactive ingredients in food and cosmetic industries.


Asunto(s)
Nanopartículas/química , Polifenoles/análisis , Extracción en Fase Sólida/métodos , Titanio/química , Vitis/química , Animales , Antioxidantes/análisis , Cromatografía Liquida , Análisis Multivariante , Extractos Vegetales/química , Análisis de Componente Principal , Estudios Prospectivos , Reproducibilidad de los Resultados , Porcinos
15.
J Ethnopharmacol ; 265: 113347, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32890715

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The members of the genus Ranunculus have counter-irritating properties and thus, they are traditionally used for treating anti-inflammatory disorders and other skin conditions. Ranunculus macrophyllus Desf. is a wild medicinal plant growing in Algeria and traditionally used to treat some cutaneous skin disorders. AIM: The aim of this study was to characterize the composition of the ethyl acetate and n-butanol extracts from Ranunculus macrophyllus Desf. as well as to elucidate and to compare their effect against acute skin inflammation. Moreover, both the antioxidant activity and the acute toxicity of the plant extracts were also studied. MATERIALS AND METHODS: Spectrophotometric and chromatographic methods were employed to identify and quantify phenolic compounds and triterpenoids from R. macrophyllus Desf. fractions. The antioxidant activity was estimated using the phosphomolebdenum, DPPH, reducing power and ß-carotene bleaching assays. The ethyl acetate and n-butanol extracts were screened for their anti-inflammatory activities using ex-vivo membrane stabilizing assays and in-vivo acute skin inflammation model. RESULTS: Ethyl acetate fraction showed the highest amounts of total phenolic compounds (413 ± 4 µg GAE/mg extract) and triterpenoids (70.4 ± 1.8 µg UAE/mg extract). Rutin, hesperidin, myricetin and kaempferol were the major compounds identified in the different fractions. Ethyl acetate fraction exhibited strong DPPH• radical scavenging ability (IC50 1.6 ± 0.2 µg/mL), high total antioxidant capacity (447 ± 7 µg AAE/mg extract) and reducing power (514 ± 8 µg AAE/mg extract). Ethyl acetate fraction inhibited (73.4 ± 0.3) % of linoleic acid peroxidation. Ethyl acetate and n-butanol fractions did not have any visible toxicity at 2000 mg/kg and presented excellent membrane stabilizing ability. The inhibition of xylene induced ear inflammation was (38 ± 4) % and (46 ± 1) % for RM-B and RM-EA, respectively. CONCLUSIONS: The high content of both phenolic compounds and triterpenoids combined with the remarkable anti-inflammatory effect and antioxidant activity of ethyl acetate and n-butanol extracts from R. macrophyllus Desf. support the wide spread use of this traditional plant on some skin disorders (inflammatory skin disorders).


Asunto(s)
Antiinflamatorios/farmacología , Fenoles/farmacología , Extractos Vegetales/farmacología , Ranunculus/química , 1-Butanol/química , Acetatos/química , Argelia , Animales , Antiinflamatorios/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Femenino , Inflamación/tratamiento farmacológico , Inflamación/patología , Masculino , Ratones , Fenoles/aislamiento & purificación , Extractos Vegetales/química
16.
Talanta ; 224: 121907, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33379111

RESUMEN

Quantification of volatile organoselenium species released by Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), after their growth in the presence of 1 and 2 mg Se·L-1 as both selenite and chitosan-modified selenium nanoparticles (Ch-SeNPs), was achieved by the application of a method based on headspace solid-phase microextraction (HS-SPME) and in-fiber internal standardization, combined with gas chromatography coupled to mass spectrometry (GC-MS). This method consisted of an initial extraction of the released volatile organoselenium compounds on the SPME fiber, followed by the extraction of internal standard (IS), deuterated dimethyl sulfide (d6-DMS), on the same fiber before its desorption at the injection port of GC-MS. The results showed that the biotransformation of selenite and Ch-SeNPs into volatile organoselenium compounds was dependent on both the type of bacterial species and the chemical form of selenium (Se) administered. In this sense, E. coli was able to biotransform both selenite and Ch-SeNPs into dimethylselenium (DMSe) and dimethyldiselenium (DMDSe) while S. aureus, biotransformed selenite into DMSe and DMDSe and, Ch-SeNPs only into DMDSe. Additionally, the formation of a volatile mixed sulfur/selenium compound, dimethyl selenenyl sulfide (DMSeS), from Se in nanoparticulated form has been detected for the first time.


Asunto(s)
Nanopartículas , Compuestos de Organoselenio , Selenio , Compuestos Orgánicos Volátiles , Escherichia coli , Cromatografía de Gases y Espectrometría de Masas , Ácido Selenioso , Microextracción en Fase Sólida , Staphylococcus aureus , Compuestos Orgánicos Volátiles/análisis
17.
Anal Chim Acta ; 1128: 116-128, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32825896

RESUMEN

Assessing the impact of nanoparticles in living systems implies a proper evaluation of their behaviour at single-cell level. Due to the small size of nanoparticles, their accumulation, transformation and location within single cells is challenging. In this work, the combination of single cell/single particle triple quadrupole inductively coupled plasma mass spectrometry (SC/SP-ICP-TQ-MS) analysis along with X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements has been applied to go deeper into the uptake and biotransformation of tellurium nanoparticles (TeNPs) in two bacterial model organisms, S. aureus and E. coli. The use of SC-ICP-TQ-MS enabled the individual introduction of bacterial cells where tellurium and phosphorous (as constitutive element) were monitored and detected at concentration levels down to femtogram (fg) per cell. S.aureus uptake of TeNPs was 0.5-1.9 fg Te cell-1 and 7-30 fg Te cell-1 in presence of 0.5 and 15 mg Te L-1 of TeNPs, respectively, whereas for E. coli, the amount of Te ranged from 0.08 to 0.88 fg Te cell-1 and from 2 to 36 fg Te cell-1 in presence of 0.5 and 15 mg Te L-1 of TeNPs, respectively. TEM and XRD analysis confirmed the occurrence of TeNPs biotransformation (from nanospheres to nanorods) as the nanoparticles were incorporated into both bacterial strains. Finally, SP-ICP-MS analysis after cell lysis was applied to determine the number of particles/rods per bacteria cell and to perform the dimensional characterization of the rod-shaped TeNPs. The results obtained clearly confirmed high cell-to-cell variability in terms of Te nanorods dimensions and TeNPs uptake. To the best of our knowledge, this is the first time that SC/SP-ICP-TQ-MS along with TEM and XRD analysis have been applied to investigate, quantitatively, nanoparticle uptake in bacterial cells and to estimate the dimensions of biogenic Te nanorods.


Asunto(s)
Nanopartículas , Telurio , Biotransformación , Escherichia coli , Staphylococcus aureus
18.
Sci Total Environ ; 725: 138453, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32298902

RESUMEN

Selenium (Se) at very low doses has important functions for humans. Unfortunately, the low levels of Se in soils in various regions of the world have implemented the agronomic biofortification of crops by applying Se-enriched fertilizers (mainly based on selenate). Lately, the use of nanofertilizers is growing in interest as their low size reduces the amount of chemicals and minimizes nutrient losses in comparison with conventional bulk fertilizers. However, the knowledge on their fate and environmental impact is still scarce. This study aims to evaluate the biotransformation of chitosan-modified Se nanoparticles (Ch-SeNPs) as well as their effect on the metabolism of essential metals (Fe, Cu, Zn and Mo) when applied to hydroponic cultivation of R. sativus and B. juncea. In house-synthesized Ch-SeNPs were characterized in both synthesis and hydroponic culture media by transmission electron microscopy (TEM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). The composition of one-tenth strength Hoagland's solution did not affect the size, shape and concentration in number of particles per mL of Ch-SeNPs. The plants were grown inside a box at 25 °C during the months of May-July in 2018. After a week of treatment with Ch-SeNPs, plants were harvested and divided into roots and aerial part. The biotransformation of Ch-SeNPs was evaluated through a process of enzymatic hydrolysis and subsequent analysis by HPLC-ICP-MS and HPLC-ESI-MS/MS. The results confirmed the transformation of Ch-SeNPs to seleno-amino acids: Selenomethionine (SeMet), Semethylselenocysteine (SeMetSeCys) and É£-glutamyl-Se-MetSeCys. Moreover, Multiple-way analysis of variance (ANOVA) and principal component analysis (PCA) showed that, regardless the plant species, Ch-SeNPs supplementation affected the absorption of Zn.


Asunto(s)
Nanopartículas , Raphanus , Selenio , Planta de la Mostaza , Ácido Selénico , Espectrometría de Masas en Tándem
19.
Anal Bioanal Chem ; 412(24): 6485-6497, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32322953

RESUMEN

Extracellular accumulation of amyloid beta peptide (Aß) is believed to be one of the main factors responsible for neurodegeneration in Alzheimer's disease (AD). Metals could induce Aß aggregation, by their redox activity or binding properties to amyloid ß fibrils, leading to their accumulation and deposition outside neurons. For this reason, metal chelation may have an acknowledged part to play in AD prevention and treatment. In the current work, the role of different selenium species, including selenium nanoparticles, in Aß aggregation, was studied by evaluating their metal-chelating properties and their ability both to inhibit metal-induced Aß1-42 aggregation fibrils and to disaggregate them once formed. Transition biometals such as Fe(II), Cu(II), and Zn(II) at 50 µM were selected to establish the in vitro models. The DPPH assay was used to determine the antioxidant capacity of the evaluated selenium species. Selenium nanoparticles stabilized with chitosan (Ch-SeNPs) and with both chitosan and chlorogenic acid polyphenol (CGA@ChSeNPs) showed the highest antioxidant properties with EC50 of 0.9 and 0.07 mM, respectively. UV-Vis and d1(UV-Vis) spectra also revealed that selenium species, in particular selenomethionine (SeMet), were able to interact with metals. Regarding Aß1-42 incubation experiments, Fe(II), Cu(II), and Zn(II) induced Aß aggregation, in a similar way to most of the evaluated selenium species. However, Ch-SeNPs produced a high inhibition of metal-induced Aß aggregation, as well as a high disaggregation capacity of Aß fibrils in both the presence and absence of biometals, in addition to reducing the length and width (20% of reduction in the presence of Zn(II)) of the generated Aß fibrils. Graphical abstract.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Antioxidantes/farmacología , Metales/efectos adversos , Agregado de Proteínas/efectos de los fármacos , Selenio/farmacología , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/metabolismo , Antioxidantes/química , Cobre/efectos adversos , Humanos , Hierro/efectos adversos , Nanopartículas/química , Agregación Patológica de Proteínas/inducido químicamente , Agregación Patológica de Proteínas/tratamiento farmacológico , Agregación Patológica de Proteínas/metabolismo , Selenio/química , Zinc/efectos adversos
20.
Sci Total Environ ; 719: 137501, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32135329

RESUMEN

The unexpected impact of nanoparticles on environment and human health remains as a matter of concern. In this sense, understanding the interaction between nanoparticles and biological indicators such as microorganism may help to understand their fate and effect in environmental systems. However, the adverse effect of nanoparticles greatly depends on their properties and, therefore, a precise evaluation of nanoparticles physicochemical characteristics is mandatory as the first step in accurately elucidating their behaviour in different ecosystems. Here in this work, in house-synthesized tellurium-based nanoparticles have been fully characterized for first time by means of a multi-method approach. Once characterized, the effect of these nanoparticles on Staphylococcus aureus and Escherichia coli biofilm biomass and structure was explored and quantified for first time. Moreover, the morphological transformations of tellurium based nanoparticles within the confines of a biofilm are also highlighted. Architectural metric calculations evidenced that nanoparticles were able to reduce the biovolume of the biofilm produced for both bacteria. Interestingly, the interaction between nanoparticles and bacterial communities led to the transformation of tellurium nanoparticles from sphere to rod-shaped nanoparticles. These findings open new insights into the behaviour of a type of uncommon nanoparticles such as tellurium-based nanoparticles on microbial communities.


Asunto(s)
Nanopartículas , Bacterias , Biopelículas , Biomasa , Ecosistema , Telurio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...